“Seisracks 2”

Title: Seisracks 2—Seismic behavior of steel storage pallet racking systems
Fund: Research Fund for Coal and Steel (RFSR-CT-2011-00031)
Partners: National Technical University of Athens (NTUA), Politecnico di Milano (POLIMI), Aachen University (RWTH), University of Liege (ULGG), CCS S.A., SCL Ingeniera, Modulblok, Nedcon, SSI-Schaeffer, Stow
Coordinator: Professor C.A. Castiglioni (PMIL)
Research group: Adamakos K., Avgerinou S., Karlos V., Spiliopoulos A., Asimakopoulos A.
Duration: 01/07/11 - 30/06/1
Budget: 1.442.116,00 €

Summary

Different configurations of steel storage pallet racks were examined under experimental and numerical analyses in order to clarify the seismic response of these structures and to propose a safer and a more sufficient design for racks especially in seismic areas. The steel structures laboratory of the NTUA was responsible for the numerical analyses of the project and the compiling of a Designer’s manual which includes further development of the existing norm of racking systems under seismic actions.

Publications

Journals:

Conferences:
1. Adamakos K., Vayas I., Static and Seismic behavior of steel storage pallet racks. 8th National Conference on Steel Structures, 2-4 October 2014, Tripoli, Greece.

Description of Steel storage pallet racks

The steel storage pallet racks are composed of thin walled sections which present limited ductility. These structures are designed to work perfectly under vertical loads; however the semi-rigid connections, between beam-columns and beam-base floor, and some types of bracing systems make these structures to present a sufficient response under horizontal seismic forces as well.
Numerical investigations

- Calibration of the numerical models using experimental results
- Incremental dynamic analyses
- Nonlinear static analyses
- Linear and nonlinear Response spectrum analyses
- FEM analyses of the detailing of the structures
- Detailed analyses for the interaction between structure and merchandize

Calibration of numerical models

![Fig.2 Calibration of the beam-end-connector’s cyclic behavior](image1.png)

![Fig.3 Calibration of the full scale test of an upright frame](image2.png)
Static and dynamic analyses

Fig. 4 Pushover curve of an unbraced racking system

Fig. 5 Fractile curve derived from an incremental dynamic analysis for an unbraced racking system

Fig. 6 Fragile curve of an unbraced racking system

Detailed analyses

Fig. 7 Analysis of a single upright member under monotonic loading

Fig. 8 Moment-rotation curve of the examined upright section

Fig. 9 Examination of the pallet-beam’s buckling length with the existence of pallets on the pallet-beams (friction elements)

Fig. 10 Load-displacement curves for different positions of the pallets and different friction coefficient values between pallet and beam
Analytical investigations

Development of a simple equation for the estimation of the maximum value of the sliding force which is developed on a beam under horizontal-eccentric seismic forces

\[H_2 = \frac{Vb\mu}{2(b+2\mu e)} \quad H_1 = \frac{Vb\mu}{4(2-e\mu)(b+2\mu)} \]

Fig.11 Theoretical model

Fig.12 The maximum forces developed on two supporting beams during the sliding of a pallet

Fig.13 Numerical evaluation of the theoretical results